Estrazione degli spettri

3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

Ntc2018 3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

cambio del nome da accelerogrammi a storie temporali del moto del terreno

Gli stati limite, ultimi e di esercizio, possono essere verificati mediante l'uso di accelerogrammi, o artificiali o simulati o naturali.

Ciascun accelerogramma descrive una componente, orizzontale o verticale, dell'azione sismica; l'insieme delle tre componenti (due orizzontali, tra loro ortogonali ed una verticale) costituisce un gruppo di accelerogrammi.

La durata degli accelerogrammi artificiali deve essere stabilita sulla base della magnitudo e degli altri parametri fisici che determinano la scelta del valore di ag e di SS.

Gli stati limite, ultimi e di esercizio, possono essere verificati mediante l'uso di storie temporali del moto del terreno artificiali o naturali.

Ciascuna storia temporale descrive una componente, orizzontale o verticale, dell'azione sismica; l'insieme delle tre componenti (due orizzontali, tra loro ortogonali, ed una verticale) costituisce un gruppo di storie temporali del moto del terreno.

La durata delle storie temporali artificiali del moto del terreno deve essere stabilita sulla base della magnitudo e degli altri parametri fisici che determinano la scelta del valore di ag e di SS.

Ntc2018 3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

In assenza di studi specifici la durata della parte pseudo-stazionaria degli accelerogrammi deve essere almeno pari a 10 s; la parte pseudo-stazionaria deve essere preceduta e seguita da tratti di ampiezza crescente da zero e decrescente a zero, di modo che la durata complessiva dell'accelerogramma sia non inferiore a 25 s.

Gli accelerogrammi artificiali devono avere uno spettro di risposta elastico coerente con lo spettro di risposta adottato nella progettazione.

La coerenza con lo spettro elastico è da verificare in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi, per un coefficiente di smorzamento viscoso equivalente x del 5%.

In assenza di studi specifici, la parte pseudostazionaria dell'accelerogramma associato alla storia deve avere durata di 10 s e deve essere preceduta e seguita da tratti di ampiezza crescente da zero e decrescente a zero, in modo che la durata complessiva dell'accelerogramma sia non inferiore a 25 s.

Gli accelerogrammi artificiali devono avere uno spettro di risposta elastico coerente con lo spettro di risposta adottato nella progettazione.

La coerenza con lo spettro di risposta elastico è da verificare in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi, per un coefficiente di smorzamento viscoso equivalente x del 5%.

Ntc2018 3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

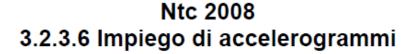
L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli 0,15s ÷ 2,0s e 0,15s ÷ 2T, in cui T è il periodo fondamentale di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e 0,15 s ÷ 1,5 T, per le verifiche agli stati limite di esercizio.

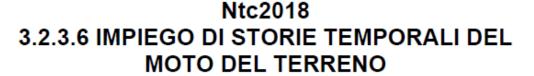
Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 Tis, essendo Tis il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di accelerogrammi artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli 0,15s ÷ 2,0s e 0,15s ÷ 2T, in cui T è il periodo proprio di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e 0,15 s ÷ 1,5 T, per le verifiche agli stati limite di esercizio.

Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 Tis, essendo Tis il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di storie temporali del moto del terreno artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici.


Ntc2018 3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO


L'uso di accelerogrammi generati mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione.

L'uso di storie temporali del moto del terreno generate mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione e che, negli intervalli di periodo sopraindicati, l'ordinata spettrale media non presenti uno scarto in difetto superiore al 20% rispetto alla corrispondente componente dello spettro elastico.

L'uso di accelerogrammi registrati è ammesso, a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

L'uso di storie temporali del moto del terreno naturali o registrate è ammesso a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

Gli accelerogrammi registrati devono essere selezionati e scalati in modo da approssimare gli spettri di risposta nel campo di periodi di interesse per il problema in esame.

Le storie temporali del moto del terreno registrate devono essere selezionate e scalate in modo tale che i relativi spettri di risposta approssimino gli spettri di risposta elastici nel campo dei periodi propri di vibrazione di interesse per il problema in esame.

Nello specifico la compatibilità con lo spettro di risposta elastico deve essere verificata in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi associati alle storie per un coefficiente di smorzamento viscoso equivalente x del 5%.

L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10% ed uno scarto in eccesso superiore al 30%, rispetto alla corrispondente componente dello spettro elastico in alcun punto dell'intervallo dei periodi propri di vibrazione di interesse per l'opera in esame per i diversi stati limite.

№ REXELite Record Selection

Session title	UntitledSession
Target spectrum	
Latitude [degrees]	45.48 Longitude 9.23
Site classification (EC8)	A v
Topography	T1 - flat surfaces, isolated cliffs and slopes with average slope angle not greater than 15 $^{\circ}$ \vee
Nominal life [years]	50 years - ordinary structures V
Building functional type	2 - ordinary structures (Cu=1.0) V
Limit state probability	Life safety (P=10%) ∨
Ground motion components	One horizontal component \vee
Preliminary record search	
Station site classification criteria	$A \boxtimes A^{\star} \boxtimes B \boxtimes B^{\star} \boxtimes C \boxtimes C^{\star} \boxtimes D \boxtimes D^{\star} \boxtimes E \boxtimes E^{\star} \boxtimes$
Magnitude min	5.5 max 6.5
Type of magnitude to consider	Mw or Ml indifferently \vee
Epicentral distance [km] min	0 max 50
Include late trigger events	No v analog records Yes v
Focal mechanism	Any mechanism v
Spectrum matching parameters and analysis option	ns s
Period range [s] lower	0.15 upper 2
Tolerance [%] lower	10 upper 30
Scaled records	No v
Waveform to exclude	

PROCEDURA DI SELEZIONE DI 7 ACCELEROGRAMMI SPETTRO-COMPATIBILI PER LA MICROZONAZIONE SISMICA DI LIVELLO III DI 138 COMUNI IN ITALIA CENTRALE

C. Felicetta, L. Luzi, F. Pacor, R. Puglia, G. Lanzano, M. D'Amico Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Milano

Per la costruzione dello spettro elastico di riferimento sono stati utilizzati i seguenti parametri:

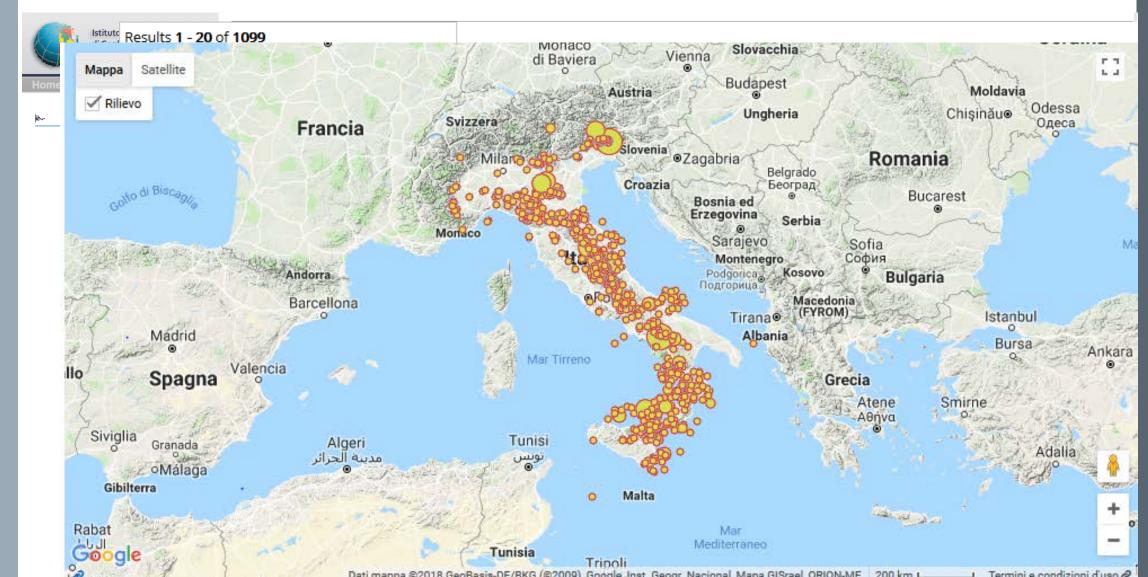
- > latitudine e longitudine del centroide del comune,
- > categoria di sito secondo NTC08: A / A*,
- > classe topografica secondo NTC08: T1,
- > vita nominale: 50 anni (corrispondente ad un periodi di ritorno pari a 475 anni),
- > classe d'uso dell'edificio: II (corrispondente a cu = 1.0), stato limite, espresso come probabilità: 10%.

La ricerca delle forme d'onda nella banca dati ESM è stata eseguita con le seguenti impostazioni:

- > componenti del moto del suolo: una componente orizzontale,
- > criterio per la classificazione di sito: A, A*,
- magnitudo minima e massima derivanti dall'analisi di disaggregazione,
- > tipo di magnitudo: MW o ML indifferentemente,
- distanza epicentrale minima e massima derivanti dall'analisi di disaggregazione,
- > esclusione delle registrazioni late triggered e di quelle analogiche,
- > meccanismo focale: faglia normale.

Per la ricerca della spettro-compatibilità sono stati definiti dei parametri di selezione, uguali per tutti i comuni interessati:

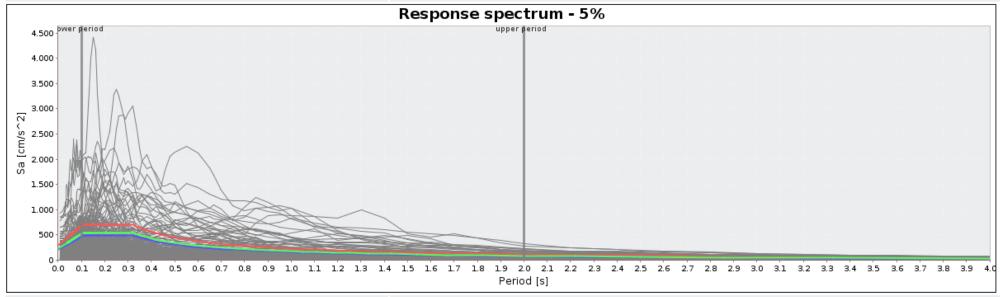
- > intervallo di periodo: 0.1 1.1 s (Ord. n. 24 del 12 maggio 2017),
- > tolleranza: massima 30%; minima 10%,
- > scalatura dei records: no.



Nel caso di mancanza di compatibilità con i criteri sopra elencati, sono stati modificati i seguenti parametri: :

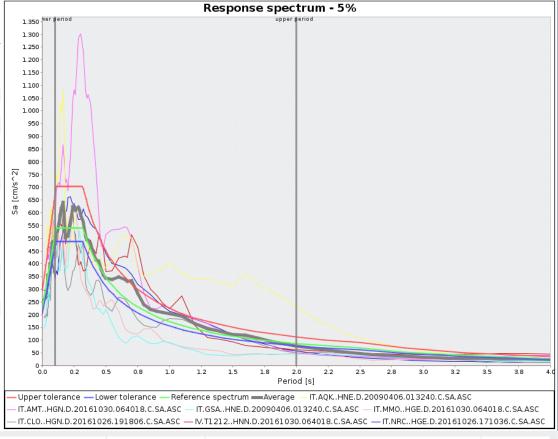
- > meccanismo focale: qualsiasi meccanismo,
- › utilizzo dei dati presenti nel database internazionale di ESM.

REXELITE - ITACA


REXELITE - ORFEUS

▶ REXELite Confirm Input Data

Session title	UntitledSession	
Latitude [degrees]	43.058504	Longitude 13.00265
Site classification (EC8)	A	
Topography	T1 - flat surfaces, isolated cliffs an	d slopes with average slope angle not greater than 15°
Nominal life [years]	50 years - ordinary structures	
Building functional type	2 - ordinary structures (Cu=1.0)	
Limit state probability	Life safety (P=10%)	
Ground motion components	One horizontal component	
Station site classification criteria	A,A*,B	
Focal mechanism	Not selected	
Magnitude min	4.0	max 7.0
Type of magnitude to use	Mw or Ml indifferently	
Epicentral distance [km] min	0.0	max 30.0



Period range [s]	lower	0.1	upper 2	2.0
Tolerance [%]	lower	10.0	upper 3	30.0
Scaled records		No		
Include	late trigger events	No	analog records N	No

REXELite Results

DOWNLOAD results:				
Request number		1317		
Session title		UntitledSession		
Latitude [degrees]		43.058504	Longitude	13.00265
Site classification (EC8)		A		
Topography		T1 - flat surfaces, isolate	ed cliffs and slopes wit	n average slope angle not greater than 15°
Nominal life [years]		50 years - ordinary stru	ctures	
Building functional type		2 - ordinary structures (Cu=1.0)	
Limit state probability		Life safety (P=10%)		
Ground motion components		One horizontal compon	ent	
Station site classification criteria	ı	A,A*,B		
Focal mechanism		Not selected		
Magnitude (Ml or Mw)	min	4.0	max	7.0
Epicentral distance [km]	min	0.0	max	30.0
Period range [s]	lower	0.1	upper	2.0
Tolerance [%]	lower	10.0	upper	30.0
Scaled records		No		
Include	late trigger events	No	analog records	No

Network	Station code	Event time	Scale factor	Usable Bandwidth [Hz]	Orientation	Response spectrum	Exclude
IT - Italian Strong Motion Network [DPC]		2016-10-30 06:40:18	1.0	39.96	HGN	2	
IT - Italian Strong Motion Network [DPC]		2009-04-06 01:32:40	1.0	39.9	HNE		
IT - Italian Strong Motion Network [DPC]		2016-10-26 19:18:06	1.0	39.93	HGN	· · · · · · · · · · · · · · · · · · ·	
IT - Italian Strong Motion Network [DPC]	GSA ∂	2009-04-06 01:32:40	1.0	39.9	HNE		
IT - Italian Strong Motion Network [DPC]		2016-10-30 06:40:18	1.0	29.95	HGE	· ·	
IT - Italian Strong Motion Network [DPC]	NRC ∂	2016-10-26 17:10:36	1.0	29.93	HGE	0	
IV - Italian National Seismic Network [INGV]	T1212 ∂	2016-10-30 06:40:18	1.0	49.96	HNN	M	

Ntc2018 3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

L'uso di accelerogrammi generati mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione.

L'uso di storie temporali del moto del terreno generate mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione e che, negli intervalli di periodo sopraindicati, l'ordinata spettrale media non presenti uno scarto in difetto superiore al 20% rispetto alla corrispondente componente dello spettro elastico.

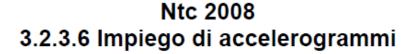
L'uso di accelerogrammi registrati è ammesso, a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

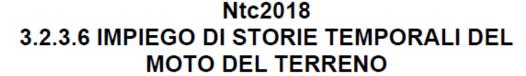
L'uso di storie temporali del moto del terreno naturali o registrate è ammesso a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

INPUT DATA ERROR

REXELite encountered an error. See below for more information

Current status		Processing time was	s longer than	180 sec					
Request info									
Request number		1319							
Session title		UntitledSession							
Processing started at		2018-04-26 02:10:36							
Latitude [degrees]		43.058504	Longitude	13.00265					
Site classification (EC8)		A							
Topography		T1 - flat surfaces, isolated cliffs and slopes with average slope angle not greater than 15°							
Nominal life [years]		50 years - ordinary structures							
Building functional type		2 - ordinary structures (Cu=1.0)							
Limit state probability		Life safety (P=10%)							
Ground motion components		One horizontal component							
Station site classification criteri	ia	A,A*,B							
Focal mechanism		Not selected							
Magnitude (Ml or Mw)	min	4.0	max	7.0					
Epicentral distance [km]	min	0.0	max	30.0					
Period range [s]	lower	0.1	upper	2.0					
Tolerance [%]	lower	10.0	upper	30.0					
Scaled records		No							
Include	late trigger events	No	analog records	No					


Respecify parameters



REXELITE

Cosa fare se non vengono estratte le settuple:

- > Accorciare il tempo di spettro-compatibilità;
- > Aumentare la distanza dell'epicentro;
- > Inserire la scalatura.

Gli accelerogrammi registrati devono essere selezionati e scalati in modo da approssimare gli spettri di risposta nel campo di periodi di interesse per il problema in esame.

Le storie temporali del moto del terreno registrate devono essere selezionate e scalate in modo tale che i relativi spettri di risposta approssimino gli spettri di risposta elastici nel campo dei periodi propri di vibrazione di interesse per il problema in esame.

Nello specifico la compatibilità con lo spettro di risposta elastico deve essere verificata in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi associati alle storie per un coefficiente di smorzamento viscoso equivalente x del 5%.

L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10% ed uno scarto in eccesso superiore al 30%, rispetto alla corrispondente componente dello spettro elastico in alcun punto dell'intervallo dei periodi propri di vibrazione di interesse per l'opera in esame per i diversi stati limite.

Ntc2018

NB:

stiamo parlando delle storie temporali artificiali

L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli 0,15s ÷ 2,0s e 0,15s ÷ 2T, in cui T è il periodo fondamentale di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e 0,15 s ÷ 1,5 T, per le verifiche agli stati limite di esercizio.

Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 Tis, essendo Tis il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di accelerogrammi artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli 0,15s ÷ 2,0s e 0,15s ÷ 2T, in cui T è il periodo proprio di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e 0,15 s ÷ 1,5 T, per le verifiche agli stati limite di esercizio.

Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 Tis, essendo Tis il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di storie temporali del moto del terreno artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici.

COME IMPORTARE IN STRATA

Teven_n_jme: central_traly Color	A B C D E F G	65	0	A	A B	С	D	E	F	G	Н	1	J
SEVENT_DATE_YYYMMDD: 20161030		66	0.001952	33	UNITS: cm/s^2								
EVENT_IME_HHMMSS: 064018		67	0.003918	34	INSTRUMENT: sensor = U	Inknow	n [Unkno	wn] digit	izer = Unkı	nown [Unk	nown]		
S EVENT_LATITUDE_DEGREE: 42.8322		68	0.003938	35	INSTRUMENT_ANALOG/	DIGITAL	L: D						
Form Constitute Constitut		69	0.003958	36	INSTRUMENTAL_FREQUE	NCY_H	Z:						
6 EVENT_LONGITUDE_DEGREE: 13.1107 7 EVENT_DEPTH_KM: 9.2 8 HYPOCENTER_REFERENCE: INGV-CNT_Seismic_Bulletin 9 MAGNITUDE_W: 6.5 10 MAGNITUDE_W. 6.5 11 MAGNITUDE_U. 6.1 12 MAGNITUDE_L: 6.1 13 FOCAL_MECHANISM: NF 14 NETWORK: IT 15 STATION_LONGITUDE_DEGREE: 42.632460 15 STATION_LATITUDE_DEGREE: 42.632460 16 STATION_LONGITUDE_DEGREE: 33.286176 17 STATION_LONGITUDE_DEGREE: 31.286176 18 STATION_LONGITUDE_DEGREE: 31.286176 19 STATION_ELEVATION_M: 950 20 LOCATION: 19 STATION_ELEVATION_M: 950 21 SENSOR_DEPTH_M: 0.0 22 VS30_M/S: 670 24 MORPHOLOGIC_CLASSIFICATION: 25 SITE_CLASSIFICATION: 26 REVENT_DOMOTOR AND ADDRESS AND ADD		70	0.003978	37	INSTRUMENTAL_DAMPIN	NG:							
The Event Depth Mr. 19.2 19.004018 39 Magnitude Wr. 19.004018 39 Mr. 19.004018 39 M		71											
### ### ### ### ### ### ### ### ### ##		72				TER:							
9 MAGNITUDE_W. 6.5				40	PGA_CM/S^2: 393.632254	4							
MAGNITUDE_U: 6.1 75 0.004079 76 0.004079 76 0.004079 76 0.004079 77 0.00412 77 0.00412 78 0.004142 78 0.004142 78 0.004142 79 0.004163 79 0.004185 79 0.004208 79 0.0042	_			41	TIME_PGA_S: 14.285000								
MAGNITUDE_L: 6.1 76 0.004099 43 FILTER_TYPE: BUTTERWORTH 45 FILTER_ORDER: 2 5 FILTER_ORDER: 2 FILTER_ORD				42	BASELINE_CORRECTION:	BASELI	NE REMO	VED					
13 FOCAL_MECHANISM: NF 77 0.00412 45 1.00 1.						RTH							
13 FOCAL_MECHANISM: NF				44	FILTER_ORDER: 2								
15 STATION_CODE: AMT 79 0.004163 46 HIGH_CUT_FREQUENCY_HZ: 40.000 47 LATE/NORMAL_TRIGGERED: NT 48 DATABASE_VERSION: DYNA 1.0 49 HEADER_FORMAT: DYNA 1.2 50 DATA_TYPE: ACCELERATION 51 DATA_TYPE: ACCELERATION 52 DATA_TYPE: ACCELERATION 53 DATA_TYPE: ACCELERATION 54 DATA_TYPE: ACCELERATION 56 DATA_TYPE: ACCELERATION 56 DATA_TYPE: ACCELERATION 57 DATA_TIMESTAMP_YYYYMMDD_HHMMSS: 20161121_160348.684 57 DATA_LICENSE: CC-BY3_0-IT (http://creativecommons.org/licenses/by/3.0/deed.en) 57 DATA_CITATION: Luzi L, Puglia R, Russo E & ORFEUS WG5 (2016). Engineering Strong Motion Datab 58 DATA_CITATION: Luzi L, Puglia R, Russo E & ORLIGON 58 DATA_CREATOR: ESM working group 58 DATA_CREATOR: CITATION: Ufficio Rischio Sismico e Vulcanico del Dipartimento della	_			45	LOW_CUT_FREQUENCY_	HZ: 0.04	10						
STATION_CODE: AMT				46	HIGH_CUT_FREQUENCY_	HZ: 40.0	000						
17 STATION_LATITUDE_DEGREE: 42.632460				47	LATE/NORMAL_TRIGGER	ED: NT							
18 STATION_LONGITUDE_DEGREE: 13.286176 19 STATION_ELEVATION_M: 950 20 LOCATION: 21 SENSOR_DEPTH_M: 0.0 22 VS30_M/S: 670 23 SITE_CLASSIFICATION_EC8: B 24 MORPHOLOGIC_CLASSIFICATION: 28 0.004231 50 DATA_TYPE: ACCELERATION 51 PROCESSING: manual (Paolucci et al., 2011) 52 DATA_TIMESTAMP_YYYYMMDD_HHMMSS: 20161121_160348.684 53 DATA_LICENSE: CC-BY3_0-IT (http://creativecommons.org/licenses/by/3.0/deed.en) 54 DATA_CITATION: Luzi L, Puglia R, Russo E & ORFEUS WG5 (2016). Engineering Strong Motion Datable DATA_CREATOR: ESM working group 55 DATA_CREATOR: ESM working group 66 ORIGINAL_DATA_MEDIATOR_CITATION: Ufficio Rischio Sismico e Vulcanico del Dipartimento della				48	DATABASE_VERSION: DY	NA 1.0							
19 STATION_ELEVATION_M: 950 20 LOCATION: 21 SENSOR_DEPTH_M: 0.0 22 VS30_M/S: 670 23 SITE_CLASSIFICATION_EC8: B 24 MORPHOLOGIC_CLASSIFICATION: 28 0.004255 51 PROCESSING: manual (Paolucci et al., 2011) 52 DATA_TIMESTAMP_YYYYMMDD_HHMMSS: 20161121_160348.684 53 DATA_LICENSE: CC-BY3_0-IT (http://creativecommons.org/licenses/by/3.0/deed.en) 54 DATA_CITATION: Luzi L, Puglia R, Russo E & ORFEUS WG5 (2016). Engineering Strong Motion Datables of DATA_CREATOR: ESM working group 55 DATA_CREATOR: ESM working group 66 ORIGINAL_DATA_MEDIATOR_CITATION: Ufficio Rischio Sismico e Vulcanico del Dipartimento della					_								
20 LOCATION: 21 SENSOR_DEPTH_M: 0.0 22 VS30_M/S: 670 23 SITE_CLASSIFICATION_EC8: B 24 MORPHOLOGIC_CLASSIFICATION: 25 DATA_TIMESTAMP_YYYYMMDD_HHMMSS: 20161121_160348.684 26 DATA_TIMESTAMP_YYYYMMDD_HHMMSS: 20161121_160348.684 27 DATA_LICENSE: CC-BY3_0-IT (http://creativecommons.org/licenses/by/3.0/deed.en) 28 DATA_LICENSE: CC-BY3_0-IT (http://creativecommons.org/licenses/by/3.0/deed.en) 26 DATA_CITATION: Luzi L, Puglia R, Russo E & ORFEUS WG5 (2016). Engineering Strong Motion Datables of DATA_CREATOR: ESM working group 27 DATA_CREATOR: ESM working group 28 DATA_CREATOR: ESM working group 38 DATA_CREATOR: ESM working group 39 DATA_CREATOR: ESM working group 30 DATA_CREATOR: ESM working group 31 DATA_CREATOR: ESM working group 32 DATA_CREATOR: ESM working group 33 DATA_CREATOR: ESM working group 34 DATA_CREATOR: ESM working group 35 DATA_CREATOR: ESM working group 36 DATA_CREATOR: ESM working group 36 DATA_CREATOR: ESM working group 36 DATA_CREATOR: ESM working group 37 DATA_CREATOR: ESM working group 38 DATA_CREATOR: ESM working group 39 DATA_CREATOR: ESM working group 30 DATA_CREATOR: ESM working group													
21 SENSOR_DEPTH_M: 0.0 85 0.004305 53 DATA_LICENSE: CC-BY3_0-IT (http://creativecommons.org/licenses/by/3.0/deed.en) 22 VS30_M/s: 670 23 SITE_CLASSIFICATION_EC8: B 87 0.004357 24 MORPHOLOGIC_CLASSIFICATION: 88 0.004385 56 ORIGINAL_DATA_MEDIATOR_CITATION: Ufficio Rischio Sismico e Vulcanico del Dipartimento della													
22 VS30_M/S: 670 86 0.004331 54 DATA_CITATION: Luzi L, Puglia R, Russo E & ORFEUS WG5 (2016). Engineering Strong Motion Datab 87 0.004357 88 0.004385 89 0.004385 60 ORIGINAL_DATA_MEDIATOR_CITATION: Ufficio Rischio Sismico e Vulcanico del Dipartimento della													
23 SITE_CLASSIFICATION_EC8: B 87 0.004357 24 MORPHOLOGIC_CLASSIFICATION: 88 0.004385 56 ORIGINAL_DATA_MEDIATOR_CITATION: Ufficio Rischio Sismico e Vulcanico del Dipartimento della													
24 MORPHOLOGIC_CLASSIFICATION: 88 0.004385 56 ORIGINAL_DATA_MEDIATOR_CITATION: Ufficio Rischio Sismico e Vulcanico del Dipartimento della	= '							& ORFEUS	WG5 (2016	j). Enginee	ring Strong	Motion Da	tabase. Isti
					_								
25 EPICENTRAL_DISTANCE_KM: 26.4 89 0.004413 57 ORIGINAL DATA MEDIATOR: Rete Accelerometrica Nazionale - RAN Download (http://www.mot											•		
26 EARTHQUAKE_BACKAZIMUTH_DEGREE: 327.1 90 0.004443 58 ORIGINAL_DATA_CREATOR_CITATION: Italian Strong Motion Network, Italian Civil Protection Dep													
27 DATE_TIME_FIRST_SAMPLE_YYYYMMDD_HHMMSS: 20161030_064016.805 91 0.004473 59 ORIGINAL_DATA_CREATOR: network: IT (Italian Strong Motion Network); owner: Dipartimento De		91							_				
28 DATE_TIME_FIRST_SAMPLE_PRECISION: milliseconds 92 0.004505 60 USER1: /home/dyna/processing-itaca/processing.py /var/www/processing/tmp/felicetta//IT.AN		92				cessing	g-itaca/pro	ocessing.p	y /var/ww	w/process	ing//tmp/fe	licetta//IT	.AMTHGE
29 SAMPLING_INTERVAL_S: 0.005000 93 0.004537 61 USER2:		93	0.004537	61	USER2:								
30 NDATA: 8039 94 0.004571 62 USER3:													
31 DURATION_S: 40.195 95 0.004606 63 USER4:													
32 STREAM: HGN 96 0.004642 64 USER5:	TREAM: HGN	96	0.004642	64	USER5:								

- > Le NTC2018 escludono l'utilizzo di storie temporali artificiali nelle analisi dinamiche di opere e sistemi geotecnici, pertanto anche nella RSL.
- > Nulla dicono, invece, sulle risposte temporali del moto del terreno generate mediante simulazione del meccanismo di sorgente e della propagazione.
- > Pertanto, nel caso in cui le estrazioni in REXELITE e REXEL non diano le settuple, è possibile utilizzare questo tipo di simulazione per estrarre gli accelerogrammi necessari alla RSL.

Ntc2018 3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli 0,15s ÷ 2,0s e 0,15s ÷ 2T, in cui T è il periodo fondamentale di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e 0,15 s ÷ 1,5 T, per le verifiche agli stati limite di esercizio.

Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 Tis, essendo Tis il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di accelerogrammi artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli 0,15s ÷ 2,0s e 0,15s ÷ 2T, in cui T è il periodo proprio di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e 0,15 s ÷ 1,5 T, per le verifiche agli stati limite di esercizio.

Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 Tis, essendo Tis il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di storie temporali del moto del terreno artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici.

Ntc2018 3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

L'uso di accelerogrammi generati mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione.

L'uso di storie temporali del moto del terreno generate mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione e che, negli intervalli di periodo sopraindicati, l'ordinata spettrale media non presenti uno scarto in difetto superiore al 20% rispetto alla corrispondente componente dello spettro elastico.

L'uso di accelerogrammi registrati è ammesso, a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

L'uso di storie temporali del moto del terreno naturali o registrate è ammesso a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

XI Congresso Nazionale "L'ingegneria Sismica in Italia", Genova 25-29 gennaio 2004

Un programma per la generazione di accelerogrammi sintetici "fisici" adeguati alla nuova normativa

M. Mucciarelli

Dipartimento di Strutture, Geotecnica, Geologia applicata all'ingegneria, Università della Basilicata, Potenza, Italia

A. Spinelli

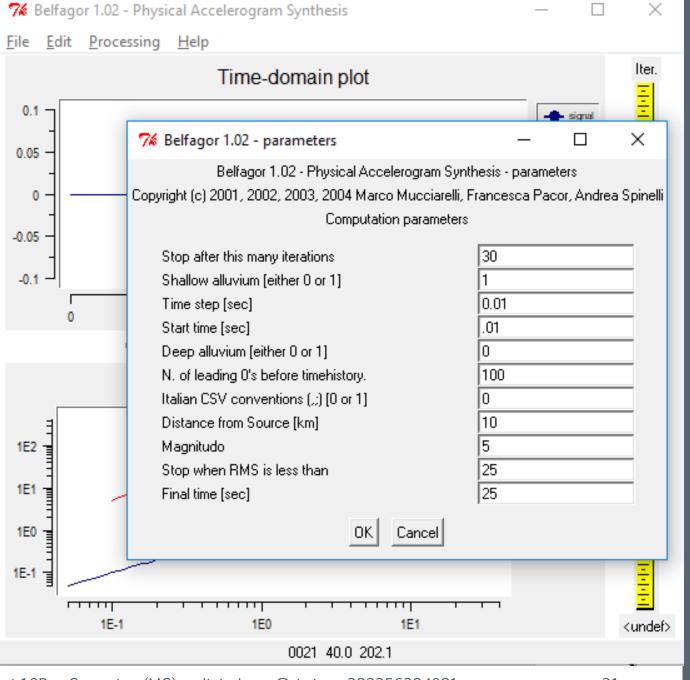
Architettura del Software, Bergamo, Italia

F. Pacor

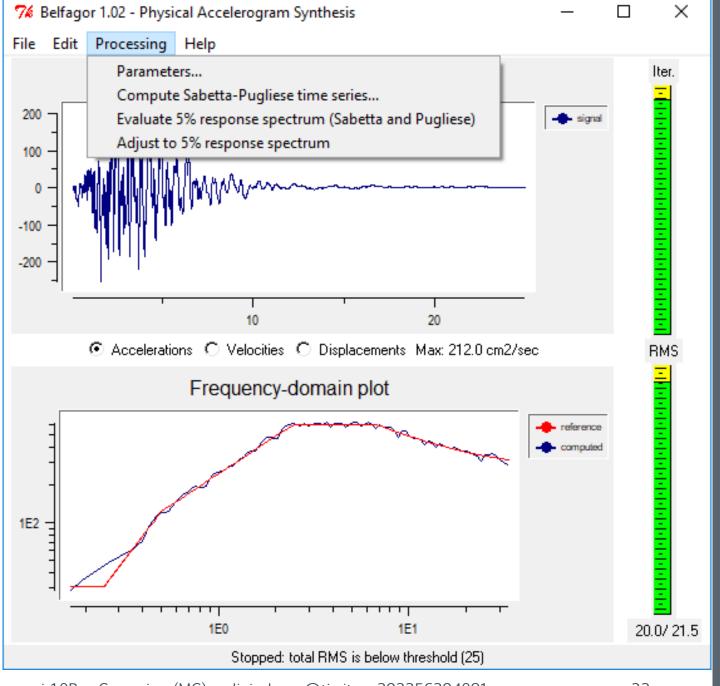
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano, Italia

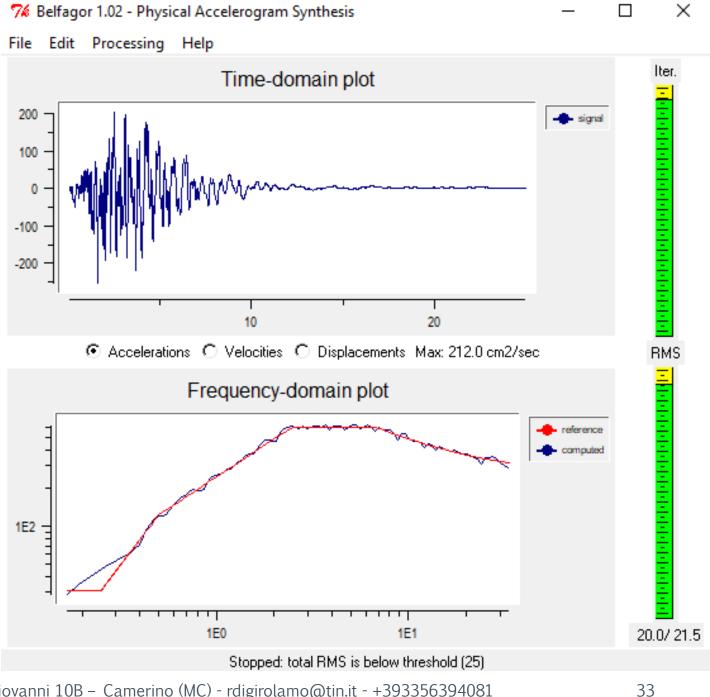
- > Sono normalmente disponibili due tipi di generatori di accelerogrammi sintetici:
- > quelli a base fisica, che simulano la sorgente in modo puntuale od esteso, ma il cui risultato (dati magnitudo e distanza) non è necessariamente compatibile con una forma spettrale prefissata quale quella prevista dalla normativa;
- > quelli a base statistica che filtrano rumore bianco fino a farlo coincidere con uno spettro di riferimento, ma senza alcun legame con caratteristiche fisiche del terremoto.

- > Il codice di calcolo BELFAGOR) deriva dal codice PhySimqe (Mucciarelli et al., 1997), e consta di due parti:
- > nella prima, utilizzando i principi teorici del lavoro di Sabetta e Pugliese (1996), viene generato un accelerogramma sintetico le cui caratteristiche di durata, ampiezza, inviluppo e distribuzione delle fasi sono determinate da magnitudo e distanza dell'evento sismico che si vuole simulare.
- > In una seconda fase, una procedura iterativa modifica la distribuzione delle ampiezze nel domino della frequenza fino ad ottenere la convergenza allo spettro di risposta desiderato.



> Si ottiene così un accelerogramma che ottempera a tutti i requisiti della normativa, ed in più consente due vantaggi: una distribuzione degli arrivi delle fasi sismiche molto simile a quella di un vero terremoto, ed una leggera variabilità nel dominio del tempo tra due generazioni successive, permettendo così di effettuare analisi ripetute tenendo conto della variabilità del moto oppure analisi su più componenti spaziali.





- Per il calcolo dell'indice di rischio delle strutture strategiche (ospedali, caserme, opere di protezione civile) e sensibili (scuole, chiese, centri commerciali)
- L'elenco delle strutture strategiche e sensibili è riportato sul decreto della Presidenza del Consiglio dei Ministri Dipartimento della Protezione Civile del 21 ottobre 2003.
- > Ripreso ed ampliato dalla DGR 1520/2003 e smi.

Edifici strategici

- Edifici destinati a sedi dell'Amministrazione Regionale (Limitatamente agli edifici ospitanti funzioni/attività connesse con la gestione dell'emergenza)
- > Edifici destinati a sedi dell'Amministrazione Provinciale (Limitatamente agli edifici ospitanti funzioni/attività connesse con la gestione dell'emergenza).
- Edifici destinati a sedi di Amministrazioni Comunali (Limitatamente agli edifici ospitanti funzioni/attività connesse con la gestione dell'emergenza).
- > Edifici destinati a sedi di Comunità Montane (*Limitatamente* agli edifici ospitanti funzioni/attività connesse con la gestione dell'emergenza).
- > Strutture non di competenza statale individuate come sedi di sale operative per la gestione delle emergenze (SOUP, SOI, CPPC, COM, COC, etc.).

Edifici strategici

- > Centri funzionali di protezione civile.
- > Edifici ed opere individuate nei piani d'emergenza regionali, provinciali, comunali o in altre disposizioni per la gestione dell'emergenza.
- › Ospedali e strutture sanitarie dotate di Pronto Soccorso o dipartimenti di emergenza, urgenza e accettazione.
- > Sedi Aziende Unità Sanitarie Locali (*Limitatamente agli edifici ospitanti funzioni/attività connesse con la gestione dell'emergenza*).
- > Centrali operative 118.
- > Presidi sanitari locali.

Infrastrutture strategiche

- Vie di comunicazione, (strade, ferrovie, ecc.) regionali, provinciali e comunali, ed opere d'arte annesse, limitatamente a quelle strategiche individuate nei piani di emergenza o in altre disposizioni per la gestione dell'emergenza.
- > Porti, aeroporti ed eliporti non di competenza statale individuati nei piani di emergenza o in altre disposizioni per la gestione dell'emergenza.
- > Strutture non di competenza statale connesse con la produzione, trasporto e distribuzione di energia elettrica.
- > Strutture non di competenza statale connesse con la produzione, trasporto e distribuzione di materiali combustibili (oleodotti, gasdotti, ecc.).
- > Strutture connesse con il funzionamento di acquedotti locali.
- > Strutture non di competenza statale connesse con i servizi di comunicazione (radio, telefonia fissa e portatile, televisione).
- > Altre strutture eventualmente specificate nei piani di emergenza o in altre disposizioni per la gestione dell'emergenza.

Strutture sensibili

- > Asili nido e scuole di ogni ordine e grado.
- > Strutture ricreative (cinema, teatri, discoteche, mostre, etc.).
- > Strutture destinate ad attività culturali (musei, biblioteche, sale convegni, etc.).
- Edifici aperti al culto non rientranti tra quelli di cui all'allegato 1, elenco B, punto 1.3 del Decreto del Capo del Dipartimento della Protezione Civile, n° 3685 del 21.10.2003.
- > Stadi ed impianti sportivi.

Strutture sensibili

- > Strutture sanitarie e/o socio-assistenziali con ospiti non autosufficienti (ospedali, case di cura, cliniche, case di riposo, ospizi, orfanotrofi, etc.).
- > Edifici e strutture aperte al pubblico adibite a grandi strutture di vendita, come definite dalle lettere c) e d) del comma 1 dell'art. 5 della Legge regionale n. 26 del 4 ottobre 1999, come modificata dalla Legge regionale n. 19 del 15 ottobre 2002, in attuazione del Decreto legislativo n. 114 del 31 marzo 1998.
- > Strutture a carattere industriale, non di competenza statale, di produzione e stoccaggio di prodotti insalubri o pericolosi.

Infrastrutture sensibili

- > Stazioni non di competenza statale per il trasporto pubblico.
- > Opere di ritenuta non di competenza statale.
- > Impianti di depurazione.
- > Altri manufatti connotati da intrinseche pericolosità eventualmente individuati in piani d'emergenza o in altre disposizioni di protezione civile.

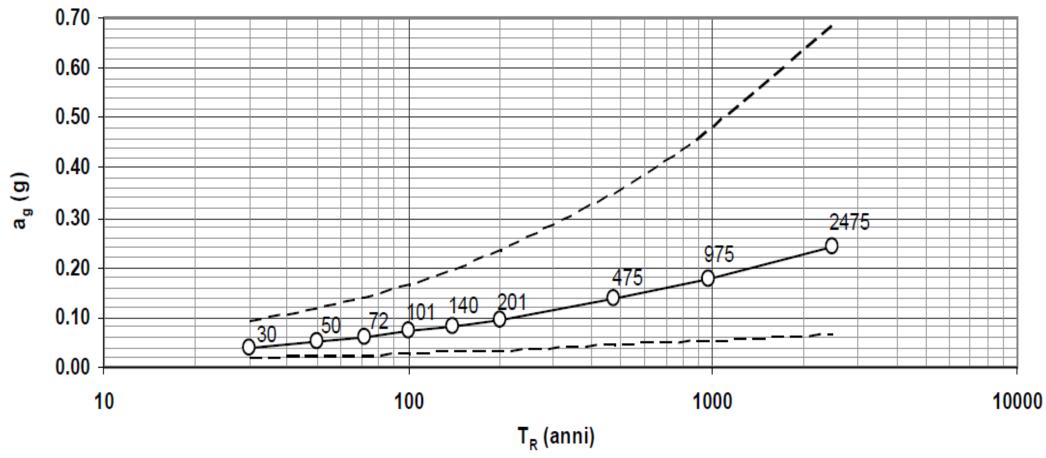


Figura C3.2.1a – Variabilità di ag con T_R: andamento medio sul territorio nazionale ed intervallo di confidenza al 95%.

№ REXELite Record Selection

Session title	UntitledSession							
Target spectrum								
Latitude [degrees]	45.48 Longitude 9.23							
Site classification (EC8)	A V							
Topography	T1 - flat surfaces, isolated cliffs and slopes with average slope angle not greater than 15°							
Nominal life [years]	50 years - ordinary structures V							
Building functional type	2 - ordinary structures (Cu=1.0) v							
Limit state probability	Life safety (P=10%) ∨							
Ground motion components	One horizontal component \vee							
Preliminary record search								
Station site classification criteria	$A \boxtimes A^{\star} \boxtimes B \boxtimes B^{\star} \boxtimes C \boxtimes C^{\star} \boxtimes D \boxtimes D^{\star} \boxtimes E \boxtimes E^{\star} \boxtimes$							
Magnitude min	5.5 max 6.5							
Type of magnitude to consider	Mw or Ml indifferently \vee							
Epicentral distance [km] min	0 max 50							
Include late trigger events	No ∨ analog records Yes ∨							
Focal mechanism	Any mechanism V							
Spectrum matching parameters and analysis options								
Period range [s] lower	0.15 upper 2							
Tolerance [%] lower	10 upper 30							
Scaled records	No v							

		50	50	50	50			100	100	100	100
		I	Ш	Ш	IV			I	11	Ш	IV
		0.7	1	1.5	2			0.7	1	1.5	2
SLO	81%	21	30	45	60	SLO	81%	42	60	90	120
SLD	63%	35	50	75	101	SLD	63%	70	101	151	201
SLV	10%	332	475	712	949	SLV	10%	664	949	1424	1898
SLC	5%	682	975	1462	1950	SLC	5%	1365	1950	2924	3899

Vita Utile	Stato Limite	% sup. 50anni	classe	tr	VR=50	VR=75	VR=100
50	SLO	81%	1	21			
50	SLO	81%	2	30	1	1	1
50	SLD	63%	1	35			
100	SLO	81%	1	42			
50	SLO	81%	3	45		2	
50	SLD	63%	2	50	2		
50	SLO	81%	4	60			2
100	SLO	81%	2	60			
100	SLD	63%	1	70			
50	SLD	63%	3	75	3	3	
100	SLO	81%	3	90			
50	SLD	63%	4	101	4		3
100	SLD	63%	2	101		4	
100	SLO	81%	4	120			
100	SLD	63%	3	151	5	5	4
100	SLD	63%	4	201	6		5
50	SLV	10%	1	332			6
50	SLV	10%	2	475	7	6	7
100	SLV	10%	1	664			
50	SLC	5%	1	682			
50	SLV	10%	3	712		7	
50	SLV	10%	4	949			
100	SLV	10%	2	949			
50	SLC	5%	2	975	8	8	8
100	SLC	5%	1	1365			
100	SLV	10%	3	1424			
50	SLC	5%	3	1462		9	
100	SLV	10%	4	1898			
50	SLC	5%	4	1950			9
100	SLC	5%	2	1950			
100	SLC	5%	3	2475	9	10	10
100	SLC	5%	3	2475			

> Il problema è che nel caso di estrazioni per il calcolo dell'indice di rischio e nel caso di terreno per il quale deve necessariamente essere applicata la risposta sismica locale dovrò necessariamente effettuare tante analisi per quanti punti sono necessari per creare la curva da spolverare per trovare l'accelerazione minima che fa verificare la mia struttura.

Fine terza parte

